Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.364
Filtrar
1.
Nature ; 628(8009): 818-825, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38658687

RESUMO

Timothy syndrome (TS) is a severe, multisystem disorder characterized by autism, epilepsy, long-QT syndrome and other neuropsychiatric conditions1. TS type 1 (TS1) is caused by a gain-of-function variant in the alternatively spliced and developmentally enriched CACNA1C exon 8A, as opposed to its counterpart exon 8. We previously uncovered several phenotypes in neurons derived from patients with TS1, including delayed channel inactivation, prolonged depolarization-induced calcium rise, impaired interneuron migration, activity-dependent dendrite retraction and an unanticipated persistent expression of exon 8A2-6. We reasoned that switching CACNA1C exon utilization from 8A to 8 would represent a potential therapeutic strategy. Here we developed antisense oligonucleotides (ASOs) to effectively decrease the inclusion of exon 8A in human cells both in vitro and, following transplantation, in vivo. We discovered that the ASO-mediated switch from exon 8A to 8 robustly rescued defects in patient-derived cortical organoids and migration in forebrain assembloids. Leveraging a transplantation platform previously developed7, we found that a single intrathecal ASO administration rescued calcium changes and in vivo dendrite retraction of patient neurons, suggesting that suppression of CACNA1C exon 8A expression is a potential treatment for TS1. Broadly, these experiments illustrate how a multilevel, in vivo and in vitro stem cell model-based approach can identify strategies to reverse disease-relevant neural pathophysiology.


Assuntos
Transtorno Autístico , Canais de Cálcio Tipo L , Movimento Celular , Éxons , Síndrome do QT Longo , Neurônios , Oligonucleotídeos Antissenso , Sindactilia , Humanos , Oligonucleotídeos Antissenso/uso terapêutico , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/administração & dosagem , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo L/genética , Transtorno Autístico/genética , Transtorno Autístico/terapia , Transtorno Autístico/tratamento farmacológico , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Éxons/genética , Sindactilia/genética , Sindactilia/terapia , Animais , Síndrome do QT Longo/genética , Síndrome do QT Longo/tratamento farmacológico , Síndrome do QT Longo/terapia , Camundongos , Movimento Celular/efeitos dos fármacos , Cálcio/metabolismo , Organoides/metabolismo , Prosencéfalo/metabolismo , Prosencéfalo/citologia , Processamento Alternativo/genética , Masculino , Dendritos/metabolismo , Dendritos/efeitos dos fármacos , Feminino
2.
Nucleic Acids Res ; 51(14): 7109-7124, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37188501

RESUMO

Antisense oligonucleotides (ASOs) dosed into cerebrospinal fluid (CSF) distribute broadly throughout the central nervous system (CNS). By modulating RNA, they hold the promise of targeting root molecular causes of disease and hold potential to treat myriad CNS disorders. Realization of this potential requires that ASOs must be active in the disease-relevant cells, and ideally, that monitorable biomarkers also reflect ASO activity in these cells. The biodistribution and activity of such centrally delivered ASOs have been deeply characterized in rodent and non-human primate (NHP) models, but usually only in bulk tissue, limiting our understanding of the distribution of ASO activity across individual cells and across diverse CNS cell types. Moreover, in human clinical trials, target engagement is usually monitorable only in a single compartment, CSF. We sought a deeper understanding of how individual cells and cell types contribute to bulk tissue signal in the CNS, and how these are linked to CSF biomarker outcomes. We employed single nucleus transcriptomics on tissue from mice treated with RNase H1 ASOs against Prnp and Malat1 and NHPs treated with an ASO against PRNP. Pharmacologic activity was observed in every cell type, though sometimes with substantial differences in magnitude. Single cell RNA count distributions implied target RNA suppression in every single sequenced cell, rather than intense knockdown in only some cells. Duration of action up to 12 weeks post-dose differed across cell types, being shorter in microglia than in neurons. Suppression in neurons was generally similar to, or more robust than, the bulk tissue. In macaques, PrP in CSF was lowered 40% in conjunction with PRNP knockdown across all cell types including neurons, arguing that a CSF biomarker readout is likely to reflect ASO pharmacodynamic effect in disease-relevant cells in a neuronal disorder. Our results provide a reference dataset for ASO activity distribution in the CNS and establish single nucleus sequencing as a method for evaluating cell type specificity of oligonucleotide therapeutics and other modalities.


Antisense oligonucleotide (ASO) drugs are a type of chemically modified DNA that can be injected into cerebrospinal fluid in order to enter brain cells and reduce the amount of RNA from a specific gene. The brain is a complex mixture of hundreds of billions of cells. When an ASO lowers a target gene's RNA by 50%, is that a 50% reduction in 100% of cells, or a 100% reduction in 50% of cells? Are the many different cell types of the brain affected equally? This new study uses single cell RNA sequencing to answer these questions, finding that ASOs are broadly active across cell types and individual cells, and linking reduction of target protein in cerebrospinal fluid to disease-relevant cells.


Assuntos
Encéfalo , Oligonucleotídeos Antissenso , Animais , Camundongos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Oligonucleotídeos/metabolismo , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/análise , RNA/metabolismo , Distribuição Tecidual , Fatores de Transcrição/metabolismo , Líquido Cefalorraquidiano/química , Doenças do Sistema Nervoso Central/terapia
3.
N Engl J Med ; 387(21): 1957-1968, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36346079

RESUMO

BACKGROUND: Bepirovirsen is an antisense oligonucleotide that targets all hepatitis B virus (HBV) messenger RNAs and acts to decrease levels of viral proteins. METHODS: We conducted a phase 2b, randomized, investigator-unblinded trial involving participants with chronic HBV infection who were receiving or not receiving nucleoside or nucleotide analogue (NA) therapy. Participants were randomly assigned (in a 3:3:3:1 ratio) to receive weekly subcutaneous injections of bepirovirsen at a dose of 300 mg for 24 weeks (group 1), bepirovirsen at a dose of 300 mg for 12 weeks then 150 mg for 12 weeks (group 2), bepirovirsen at a dose of 300 mg for 12 weeks then placebo for 12 weeks (group 3), or placebo for 12 weeks then bepirovirsen at a dose of 300 mg for 12 weeks (group 4). Groups 1, 2, and 3 received loading doses of bepirovirsen. The composite primary outcome was a hepatitis B surface antigen (HBsAg) level below the limit of detection and an HBV DNA level below the limit of quantification maintained for 24 weeks after the planned end of bepirovirsen treatment, without newly initiated antiviral medication. RESULTS: The intention-to-treat population comprised 457 participants (227 receiving NA therapy and 230 not receiving NA therapy). Among those receiving NA therapy, a primary-outcome event occurred in 6 participants (9%; 95% credible interval, 0 to 31) in group 1, in 6 (9%; 95% credible interval, 0 to 43) in group 2, in 2 (3%; 95% credible interval, 0 to 16) in group 3, and 0 (0%; post hoc credible interval, 0 to 8) in group 4. Among participants not receiving NA therapy, a primary-outcome event occurred in 7 participants (10%; 95% credible interval, 0 to 38), 4 (6%; 95% credible interval, 0 to 25), 1 (1%; post hoc credible interval, 0 to 6), and 0 (0%; post hoc credible interval, 0 to 8), respectively. During weeks 1 through 12, adverse events, including injection-site reactions, pyrexia, fatigue, and increased alanine aminotransferase levels, were more common with bepirovirsen (groups 1, 2, and 3) than with placebo (group 4). CONCLUSIONS: In this phase 2b trial, bepirovirsen at a dose of 300 mg per week for 24 weeks resulted in sustained HBsAg and HBV DNA loss in 9 to 10% of participants with chronic HBV infection. Larger and longer trials are required to assess the efficacy and safety of bepirovirsen. (Funded by GSK; B-Clear ClinicalTrials.gov number, NCT04449029.).


Assuntos
Antivirais , Hepatite B Crônica , Oligonucleotídeos Antissenso , RNA Viral , Humanos , Antivirais/efeitos adversos , Antivirais/uso terapêutico , DNA Viral/sangue , Antígenos E da Hepatite B/sangue , Antígenos de Superfície da Hepatite B/sangue , Vírus da Hepatite B/genética , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/virologia , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/efeitos adversos , Oligonucleotídeos Antissenso/uso terapêutico , Resultado do Tratamento , RNA Viral/efeitos dos fármacos , RNA Mensageiro/efeitos dos fármacos , Injeções Subcutâneas
4.
N Engl J Med ; 387(12): 1099-1110, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36129998

RESUMO

BACKGROUND: The intrathecally administered antisense oligonucleotide tofersen reduces synthesis of the superoxide dismutase 1 (SOD1) protein and is being studied in patients with amyotrophic lateral sclerosis (ALS) associated with mutations in SOD1 (SOD1 ALS). METHODS: In this phase 3 trial, we randomly assigned adults with SOD1 ALS in a 2:1 ratio to receive eight doses of tofersen (100 mg) or placebo over a period of 24 weeks. The primary end point was the change from baseline to week 28 in the total score on the ALS Functional Rating Scale-Revised (ALSFRS-R; range, 0 to 48, with higher scores indicating better function) among participants predicted to have faster-progressing disease. Secondary end points included changes in the total concentration of SOD1 protein in cerebrospinal fluid (CSF), in the concentration of neurofilament light chains in plasma, in slow vital capacity, and in handheld dynamometry in 16 muscles. A combined analysis of the randomized component of the trial and its open-label extension at 52 weeks compared the results in participants who started tofersen at trial entry (early-start cohort) with those in participants who switched from placebo to the drug at week 28 (delayed-start cohort). RESULTS: A total of 72 participants received tofersen (39 predicted to have faster progression), and 36 received placebo (21 predicted to have faster progression). Tofersen led to greater reductions in concentrations of SOD1 in CSF and of neurofilament light chains in plasma than placebo. In the faster-progression subgroup (primary analysis), the change to week 28 in the ALSFRS-R score was -6.98 with tofersen and -8.14 with placebo (difference, 1.2 points; 95% confidence interval [CI], -3.2 to 5.5; P = 0.97). Results for secondary clinical end points did not differ significantly between the two groups. A total of 95 participants (88%) entered the open-label extension. At 52 weeks, the change in the ALSFRS-R score was -6.0 in the early-start cohort and -9.5 in the delayed-start cohort (difference, 3.5 points; 95% CI, 0.4 to 6.7); non-multiplicity-adjusted differences favoring early-start tofersen were seen for other end points. Lumbar puncture-related adverse events were common. Neurologic serious adverse events occurred in 7% of tofersen recipients. CONCLUSIONS: In persons with SOD1 ALS, tofersen reduced concentrations of SOD1 in CSF and of neurofilament light chains in plasma over 28 weeks but did not improve clinical end points and was associated with adverse events. The potential effects of earlier as compared with delayed initiation of tofersen are being further evaluated in the extension phase. (Funded by Biogen; VALOR and OLE ClinicalTrials.gov numbers, NCT02623699 and NCT03070119; EudraCT numbers, 2015-004098-33 and 2016-003225-41.).


Assuntos
Esclerose Amiotrófica Lateral , Oligonucleotídeos Antissenso , Superóxido Dismutase-1 , Adulto , Esclerose Amiotrófica Lateral/sangue , Esclerose Amiotrófica Lateral/líquido cefalorraquidiano , Esclerose Amiotrófica Lateral/tratamento farmacológico , Esclerose Amiotrófica Lateral/genética , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Método Duplo-Cego , Humanos , Injeções Espinhais , Proteínas de Neurofilamentos/sangue , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Recuperação de Função Fisiológica/efeitos dos fármacos , Superóxido Dismutase-1/líquido cefalorraquidiano , Superóxido Dismutase-1/genética
5.
Nucleic Acids Res ; 50(15): 8418-8430, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35920332

RESUMO

The lung is a complex organ with various cell types having distinct roles. Antisense oligonucleotides (ASOs) have been studied in the lung, but it has been challenging to determine their effectiveness in each cell type due to the lack of appropriate analytical methods. We employed three distinct approaches to study silencing efficacy within different cell types. First, we used lineage markers to identify cell types in flow cytometry, and simultaneously measured ASO-induced silencing of cell-surface proteins CD47 or CD98. Second, we applied single-cell RNA sequencing (scRNA-seq) to measure silencing efficacy in distinct cell types; to the best of our knowledge, this is the first time scRNA-seq has been applied to measure the efficacy of oligonucleotide therapeutics. In both approaches, fibroblasts were the most susceptible to locally delivered ASOs, with significant silencing also in endothelial cells. Third, we confirmed that the robust silencing in fibroblasts is broadly applicable by silencing two targets expressed mainly in fibroblasts, Mfap4 and Adam33. Across independent approaches, we demonstrate that intratracheally administered LNA gapmer ASOs robustly induce gene silencing in lung fibroblasts. ASO-induced gene silencing in fibroblasts was durable, lasting 4-8 weeks after a single dose. Thus, lung fibroblasts are well aligned with ASOs as therapeutics.


Assuntos
Células Endoteliais , Fibroblastos/efeitos dos fármacos , Pulmão/citologia , Oligonucleotídeos Antissenso/administração & dosagem , Animais , Fibroblastos/metabolismo , Inativação Gênica , Pulmão/efeitos dos fármacos , Camundongos , Oligonucleotídeos/administração & dosagem , Traqueia/metabolismo
6.
Int J Mol Sci ; 23(5)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35269571

RESUMO

Inherited cardiomyopathy caused by the p.(Arg14del) pathogenic variant of the phospholamban (PLN) gene is characterized by intracardiomyocyte PLN aggregation and can lead to severe dilated cardiomyopathy. We recently reported that pre-emptive depletion of PLN attenuated heart failure (HF) in several cardiomyopathy models. Here, we investigated if administration of a Pln-targeting antisense oligonucleotide (ASO) could halt or reverse disease progression in mice with advanced PLN-R14del cardiomyopathy. To this aim, homozygous PLN-R14del (PLN-R14 Δ/Δ) mice received PLN-ASO injections starting at 5 or 6 weeks of age, in the presence of moderate or severe HF, respectively. Mice were monitored for another 4 months with echocardiographic analyses at several timepoints, after which cardiac tissues were examined for pathological remodeling. We found that vehicle-treated PLN-R14 Δ/Δ mice continued to develop severe HF, and reached a humane endpoint at 8.1 ± 0.5 weeks of age. Both early and late PLN-ASO administration halted further cardiac remodeling and dysfunction shortly after treatment start, resulting in a life span extension to at least 22 weeks of age. Earlier treatment initiation halted disease development sooner, resulting in better heart function and less remodeling at the study endpoint. PLN-ASO treatment almost completely eliminated PLN aggregates, and normalized levels of autophagic proteins. In conclusion, these findings indicate that PLN-ASO therapy may have beneficial outcomes in PLN-R14del cardiomyopathy when administered after disease onset. Although existing tissue damage was not reversed, further cardiomyopathy progression was stopped, and PLN aggregates were resolved.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Cardiomiopatias/tratamento farmacológico , Oligonucleotídeos Antissenso/administração & dosagem , Substituição de Aminoácidos , Animais , Proteínas de Ligação ao Cálcio/antagonistas & inibidores , Proteínas de Ligação ao Cálcio/química , Cardiomiopatias/genética , Cardiomiopatias/fisiopatologia , Modelos Animais de Doenças , Feminino , Testes de Função Cardíaca/efeitos dos fármacos , Humanos , Masculino , Camundongos , Oligonucleotídeos Antissenso/farmacologia , Agregados Proteicos/efeitos dos fármacos , Resultado do Tratamento
7.
CNS Drugs ; 36(2): 181-190, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35080757

RESUMO

BACKGROUND: Nusinersen is approved for the treatment of spinal muscular atrophy. The most common approved dosing regimen is four intrathecal loading doses of nusinersen 12 mg; the first three are administered at 14-day intervals followed by a fourth dose 30 days later, and then 12-mg maintenance doses are administered every 4 months thereafter. Interruption of nusinersen treatment in the maintenance dosing phase might occur for a number of clinical reasons. OBJECTIVE: The objective of this report is to describe dosing regimens that allow for the most rapid restoration of steady-state concentrations of nusinersen in the cerebrospinal fluid (CSF) following a treatment interruption during maintenance dosing. METHODS: Population pharmacokinetic models using integrated pharmacokinetic data from ten nusinersen clinical trials that included a broad range of participants with spinal muscular atrophy treated with intrathecal nusinersen were used to investigate different durations of treatment interruptions during maintenance treatment. Potential dosing regimens for re-initiation of nusinersen were evaluated, with the goal of achieving the quickest restoration of steady-state nusinersen CSF concentrations without exceeding maximal CSF exposures observed during the initial loading period. RESULTS: Our pharmacokinetic modeling indicates the following regimen will lead to optimal restoration of nusinersen CSF levels after treatment interruption: two doses of nusinersen should be administered at 14-day intervals following treatment interruptions of ≥ 8 to < 16 months since the last dose, and three doses of nusinersen at 14-day intervals for treatment interruptions of ≥ 16 to < 40 months since the last maintenance dose, with subsequent maintenance dosing every 4 months in both instances. After treatment interruptions of ≥ 40 months, the full loading regimen will rapidly restore nusinersen CSF levels. CONCLUSIONS: Prolonged treatment interruptions lead to suboptimal CSF levels of nusinersen. The optimal regimen to restore nusinersen CSF levels depends on the interval since the last maintenance dose was administered.


Nusinersen is a drug used to treat people of all ages who have spinal muscular atrophy. Nusinersen is injected with a thin needle into the lower back, a procedure known as a lumbar puncture. People initially receive three doses of nusinersen 12 mg each 14 days apart. They receive a fourth dose 1 month later, and then injections every 4 months (known as maintenance dosing). This treatment plan allows nusinersen to build up to effective levels in the fluid surrounding the spinal cord and brain. Some people may miss dose(s) or may stop nusinersen treatment at some point during maintenance dosing and then may want to continue treatment. This study used information from ten clinical trials to find out the best way to restart treatment to build up nusinersen to effective levels. People with a treatment break of ≥ 8 to < 16 months since the last dose need two doses of nusinersen at 14-day intervals before receiving maintenance dosing. People with a treatment break of ≥ 16 to < 40 months since the last dose need three doses of nusinersen at 14-day intervals before receiving maintenance dosing. If people stopped treatment for ≥ 40 months, they would need four doses before starting maintenance treatment. Results from this study showed that the number of doses that people needed before starting maintenance treatment depended on how long the treatment break was.


Assuntos
Relação Dose-Resposta a Droga , Monitoramento de Medicamentos/métodos , Quimioterapia de Manutenção/métodos , Atrofia Muscular Espinal , Oligonucleotídeos , Esquema de Medicação , Duração da Terapia , Humanos , Injeções Espinhais/métodos , Modelos Biológicos , Atrofia Muscular Espinal/líquido cefalorraquidiano , Atrofia Muscular Espinal/tratamento farmacológico , Oligonucleotídeos/administração & dosagem , Oligonucleotídeos/líquido cefalorraquidiano , Oligonucleotídeos/farmacocinética , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/líquido cefalorraquidiano , Oligonucleotídeos Antissenso/farmacocinética , Resultado do Tratamento
8.
Genes (Basel) ; 13(1)2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35052449

RESUMO

The recent advances in nucleic acid therapeutics demonstrate the potential to treat hereditary neurological disorders by targeting their causative genes. Spinal and bulbar muscular atrophy (SBMA) is an X-linked and adult-onset neurodegenerative disorder caused by the expansion of trinucleotide cytosine-adenine-guanine repeats, which encodes a polyglutamine tract in the androgen receptor gene. SBMA belongs to the family of polyglutamine diseases, in which the use of nucleic acids for silencing a disease-causing gene, such as antisense oligonucleotides and small interfering RNAs, has been intensively studied in animal models and clinical trials. A unique feature of SBMA is that both motor neuron and skeletal muscle pathology contribute to disease manifestations, including progressive muscle weakness and atrophy. As both motor neurons and skeletal muscles can be therapeutic targets in SBMA, nucleic acid-based approaches for other motor neuron diseases and myopathies may further lead to the development of a treatment for SBMA. Here, we review studies of nucleic acid-based therapeutic approaches in SBMA and related neurological disorders and discuss current limitations and perspectives to apply these approaches to patients with SBMA.


Assuntos
Atrofia Bulboespinal Ligada ao X/terapia , Doenças do Sistema Nervoso/terapia , Oligonucleotídeos Antissenso/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Animais , Atrofia Bulboespinal Ligada ao X/genética , Atrofia Bulboespinal Ligada ao X/patologia , Humanos , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/patologia
9.
BMC Cancer ; 22(1): 79, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35042456

RESUMO

BACKGROUND: Long non-coding RNA (LncRNA) HOTAIR was amplified and overexpressed in many human carcinomas, which could serve as a useful target for cancer early detection and treatment. The 99mTc radiolabeled antisense oligonucleotides (ASON) could visualize the expression of HOTAIR and provide a diagnostic value for malignant tumors. The aim of this study was to evaluate whether liposome-coated antisense oligonucleotide probe 99mTc-HYNIC-ASON targeting HOTAIR can be used in in vivo imaging of HOTAIR in malignant glioma xenografts. METHODS: The ASON targeting LncRNA HOTAIR as well as mismatched ASON (ASONM) were designed and modified. The radiolabeling of 99mTc with two probes were via the conjugation of bifunctional chelator HYNIC. Then probes were purified by Sephadex G25 and tested for their radiolabeling efficiency and purity, as well as stability by ITLC (Instant thin-layer chromatography) and gel electrophoresis. Then the radiolabeled probes were transfected with lipofectamine 2000 for cellular uptake test and the next experimental use. Furthermore, biodistribution study and SPECT imaging were performed at different times after liposome-coated 99mTc-HYNIC-ASON/ASONM were intravenously injected in glioma tumor-bearing mice models. All data were analyzed by statistical software. RESULTS: The labeling efficiencies of 99mTc-HYNIC-ASON and 99mTc-HYNIC-ASONM measured by ITLC were (91 ± 1.5) % and (90 ± 0.6) %, respectively, and both radiochemical purities were more than 89%. Two probes showed good stability within 12 h. Gel electrophoresis confirmed that the oligomers were successfully radiolabeled no significant degradation were found. Biodistribution study demonstrated that liposome-coated antisense probes were excreted mainly through the kidney and bladder and has higher uptake in the tumor. Meanwhile, the tumor was clearly shown after injection of liposome coated 99mTc-HYNIC-ASON, and its T/M ratio was higher than that in the non-transfection group and mismatched group. No tumor was seen in mismatched and blocking group. CONCLUSION: The liposome encapsulated 99mTc-HYNIC-ASON probe can be used in the in vivo, real-time imaging of LncRNA HOTAIR expression in malignant glioma.


Assuntos
Glioma/diagnóstico por imagem , Oligonucleotídeos Antissenso/administração & dosagem , Compostos de Organotecnécio/administração & dosagem , RNA Longo não Codificante/análise , Compostos Radiofarmacêuticos/administração & dosagem , Animais , Modelos Animais de Doenças , Xenoenxertos/metabolismo , Lipossomos , Camundongos , Distribuição Tecidual
10.
FASEB J ; 35(12): e22053, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34820911

RESUMO

Mutations in KCNC3, the gene that encodes the Kv3.3 voltage dependent potassium channel, cause Spinocerebellar Ataxia type 13 (SCA13), a disease associated with disrupted motor behaviors, progressive cerebellar degeneration, and abnormal auditory processing. The Kv3.3 channel directly binds Hax-1, a cell survival protein. A disease-causing mutation, Kv3.3-G592R, causes overstimulation of Tank Binding Kinase 1 (Tbk1) in the cerebellum, resulting in the degradation of Hax-1 by promoting its trafficking into multivesicular bodies and then to lysosomes. We have now tested the effects of antisense oligonucleotides (ASOs) directed against the Kv3.3 channel on both wild type mice and those bearing the Kv3.3-G592R-encoding mutation. Intracerebroventricular infusion of the Kcnc3-specific ASO suppressed both mRNA and protein levels of the Kv3.3 channel. In wild-type animals, this produced no change in levels of activated Tbk1, Hax-1 or Cd63, a tetraspanin marker for late endosomes/multivesicular bodies. In contrast, in mice homozygous for the Kv3.3-G592R-encoding mutation, the same ASO reduced Tbk1 activation and levels of Cd63, while restoring the expression of Hax-1 in the cerebellum. The motor behavior of the mice was tested using a rotarod assay. Surprisingly, the active ASO had no effects on the motor behavior of wild type mice but restored the behavior of the mutant mice to those of age-matched wild type animals. Our findings indicate that, in mature intact animals, suppression of Kv3.3 expression can reverse the deleterious effects of a SCA13 mutation while having little effect on wild type animals. Thus, targeting Kv3.3 expression may prove a viable therapeutic approach for SCA13.


Assuntos
Transtornos Motores/prevenção & controle , Mutação , Oligonucleotídeos Antissenso/administração & dosagem , Proteínas Serina-Treonina Quinases/metabolismo , Canais de Potássio Shaw/antagonistas & inibidores , Ataxias Espinocerebelares/complicações , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transtornos Motores/etiologia , Transtornos Motores/metabolismo , Transtornos Motores/patologia , Proteínas Serina-Treonina Quinases/genética , Canais de Potássio Shaw/genética , Canais de Potássio Shaw/metabolismo
11.
Nat Med ; 27(10): 1725-1734, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34642494

RESUMO

Chronic infection with hepatitis B virus (HBV) leads to an increased risk of death from cirrhosis and hepatocellular carcinoma. Functional cure rates are low with current treatment options (nucleos(t)ide analogs (NAs) and pegylated interferons). Bepirovirsen is an antisense oligonucleotide targeting all HBV messenger RNAs; in cell culture and animal models, bepirovirsen leads to reductions in HBV-derived RNAs, HBV DNA and viral proteins. This phase 2 double-blinded, randomized, placebo-controlled trial is the first evaluation of the safety and activity of an antisense oligonucleotide targeting HBV RNA in both treatment-naïve and virally suppressed individuals with chronic HBV infection. The primary objective was to assess the safety and tolerability of bepirovirsen in individuals with chronic hepatitis B (CHB) (NCT02981602). The secondary objective was to assess antiviral activity, including the change from baseline to day 29 in serum hepatitis B surface antigen (HBsAg) concentration. Participants with CHB infection ≥6 months and serum HBsAg ≥50 IU ml-1 were enrolled from seven centers across Hong Kong and the Republic of Korea and randomized (3:1 within each dose cohort) to receive bepirovirsen or placebo via subcutaneous injection twice weekly during weeks 1 and 2 (days 1, 4, 8 and 11) and once weekly during weeks 3 and 4 (days 15 and 22). Participants were then followed for 26 weeks. Twenty-four participants were treatment-naïve and seven were receiving stable NA therapy. Treatment-emergent adverse events were mostly mild/moderate (most commonly injection site reactions). Eleven (61.1%) and three (50.0%) treatment-naïve participants experienced one or more treatment-emergent adverse event in the bepirovirsen and placebo groups, respectively. In participants receiving NA therapy, the corresponding numbers were three (60.0%) and one (50.0%). Transient, self-resolving alanine aminotransferase flares (≥2× upper limit of normal) were observed in eight treatment-naïve participants and three participants on stable NA regimens in the bepirovirsen treatment arms. HBsAg reductions were observed and were significant versus placebo for treatment-naïve participants receiving bepirovirsen 300 mg (P = 0.001), but not for the bepirovirsen 150 mg group (P = 0.245) or participants receiving stable NA therapy (P = 0.762). Two participants in each of the 300 mg dose groups achieved HBsAg levels below the lower limit of quantitation by day 29 (n = 3) or day 36 (n = 1). Bepirovirsen had a favorable safety profile. These preliminary observations warrant further investigation of the safety and activity of bepirovirsen in a larger CHB patient population.


Assuntos
Antivirais/administração & dosagem , Vírus da Hepatite B/efeitos dos fármacos , Hepatite B Crônica/tratamento farmacológico , Oligonucleotídeos Antissenso/administração & dosagem , Adolescente , Adulto , Antivirais/efeitos adversos , Quimioterapia Combinada , Feminino , Antígenos de Superfície da Hepatite B/sangue , Vírus da Hepatite B/patogenicidade , Hepatite B Crônica/sangue , Hepatite B Crônica/genética , Hepatite B Crônica/virologia , Humanos , Masculino , Pessoa de Meia-Idade , Oligonucleotídeos Antissenso/efeitos adversos , Placebos , Polietilenoglicóis/química , República da Coreia/epidemiologia , Adulto Jovem
12.
Curr Issues Mol Biol ; 43(3): 1267-1281, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34698059

RESUMO

Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disease caused by out-of-frame or nonsense mutation in the dystrophin gene. It begins with a loss of ambulation between 9 and 14 years of age, followed by various other symptoms including cardiac dysfunction. Exon skipping of patients' DMD pre-mRNA induced by antisense oligonucleotides (AOs) is expected to produce shorter but partly functional dystrophin proteins, such as those possessed by patients with the less severe Becker muscular dystrophy. We are working on developing modified nucleotides, such as 2'-O,4'-C-ethylene-bridged nucleic acids (ENAs), possessing high nuclease resistance and high affinity for complementary RNA strands. Here, we demonstrate the preclinical characteristics (exon-skipping activity in vivo, stability in blood, pharmacokinetics, and tissue distribution) of renadirsen, a novel AO modified with 2'-O-methyl RNA/ENA chimera phosphorothioate designed for dystrophin exon 45 skipping and currently under clinical trials. Notably, systemic delivery of renadirsen sodium promoted dystrophin exon skipping in cardiac muscle, skeletal muscle, and diaphragm, compared with AOs with the same sequence as renadirsen but conventionally modified by PMO and 2'OMePS. These findings suggest the promise of renadirsen sodium as a therapeutic agent that improves not only skeletal muscle symptoms but also other symptoms in DMD patients, such as cardiac dysfunction.


Assuntos
Processamento Alternativo , Distrofina/genética , Oligonucleotídeos Antissenso/genética , Animais , Cromatografia Líquida , Masculino , Camundongos , Camundongos Endogâmicos mdx , Estrutura Molecular , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Oligodesoxirribonucleotídeos/química , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/síntese química , Oligonucleotídeos Antissenso/química , Oligorribonucleotídeos/química , Espectrometria de Massas em Tandem , Distribuição Tecidual
13.
Adv Drug Deliv Rev ; 178: 113834, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34492233

RESUMO

Recent medical advances have exploited the ability to address a given disease at the underlying level of transcription and translation. These treatment paradigms utilize nucleic acids - including short interfering RNA (siRNA), microRNA (miRNA), antisense oligonucleotides (ASO), and messenger RNA (mRNA) - to achieve a desired outcome ranging from gene knockdown to induced expression of a selected target protein. Towards this end, numerous strategies for encapsulation or stabilization of various nucleic acid structures have been developed in order to achieve intracellular delivery. In this review, we discuss several therapeutic applications of nucleic acids directed towards specific diseases and tissues of interest, in particular highlighting recent technologies which have reached late-stage clinical trials and received FDA approval.


Assuntos
Sistemas de Liberação de Medicamentos/tendências , Técnicas de Transferência de Genes/tendências , Ácidos Nucleicos/administração & dosagem , Ácidos Nucleicos/genética , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/genética , Animais , COVID-19/genética , COVID-19/metabolismo , COVID-19/terapia , Ensaios Clínicos como Assunto/métodos , Aprovação de Drogas , Sistemas de Liberação de Medicamentos/métodos , Hepatite/genética , Hepatite/metabolismo , Hepatite/terapia , Humanos , MicroRNAs/administração & dosagem , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/terapia , Ácidos Nucleicos/metabolismo , Oligonucleotídeos Antissenso/metabolismo , RNA Mensageiro/administração & dosagem , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
14.
Muscle Nerve ; 64(4): 404-412, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34231920

RESUMO

Spinal muscular atrophy (SMA) is an inherited lower motor neuron disease. SMA occurs secondary to alterations in the survival motor neuron 1 gene (SMN1), which is the main driver of SMN protein production. The severity of the disease is determined by the number of copies of the SMN2 gene, which is a homolog to SMN1 but not as efficient in protein production. Three medications have recently been approved for the treatment of SMA. Nusinersen is an intrathecal antisense oligonucleotide that alters SMN2 pre-mRNA, onasemnogene abeparvovec-xioi is an intravenous SMN1 gene replacement therapy, and risdiplam is an oral small molecule splicing modifier of SMN2. No head-to-head studies have been conducted comparing these medications, so selection of one of these medications for an individual with SMA can be challenging. In this article we outline the efficacy, safety, and other pertinent factors to consider when selecting a therapy for an individual with SMA. The age of the individual and comorbidities, such as liver or kidney disease, help guide treatment choices. All three of these medications are efficacious, and early initiation is critical for obtaining the best outcomes.


Assuntos
Atrofia Muscular Espinal/tratamento farmacológico , Fármacos Neuromusculares/administração & dosagem , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos/administração & dosagem , Animais , Compostos Azo/administração & dosagem , Compostos Azo/imunologia , Produtos Biológicos/administração & dosagem , Produtos Biológicos/imunologia , Humanos , Atrofia Muscular Espinal/epidemiologia , Atrofia Muscular Espinal/imunologia , Fármacos Neuromusculares/imunologia , Oligonucleotídeos/imunologia , Oligonucleotídeos Antissenso/imunologia , Pirimidinas/administração & dosagem , Pirimidinas/imunologia , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/imunologia , Resultado do Tratamento
15.
Hepatology ; 74(6): 3127-3145, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34331779

RESUMO

BACKGROUND AND AIMS: The hepatic mitogen-activated protein kinase (MAPK) cascade leading to c-Jun N-terminal kinase (JNK) activation has been implicated in the pathogenesis of nonalcoholic fatty liver (NAFL)/NASH. In acute hepatotoxicity, we previously identified a pivotal role for mitochondrial SH3BP5 (SAB; SH3 homology associated BTK binding protein) as a target of JNK, which sustains its activation through promotion of reactive oxygen species production. Therefore, we assessed the role of hepatic SAB in experimental NASH and metabolic syndrome. APPROACH AND RESULTS: In mice fed high-fat, high-calorie, high-fructose (HFHC) diet, SAB expression progressively increased through a sustained JNK/activating transcription factor 2 (ATF2) activation loop. Inducible deletion of hepatic SAB markedly decreased sustained JNK activation and improved systemic energy expenditure at 8 weeks followed by decreased body fat at 16 weeks of HFHC diet. After 30 weeks, mice treated with control-antisense oligonucleotide (control-ASO) developed steatohepatitis and fibrosis, which was prevented by Sab-ASO treatment. Phosphorylated JNK (p-JNK) and phosphorylated ATF2 (p-ATF2) were markedly attenuated by Sab-ASO treatment. After 52 weeks of HFHC feeding, control N-acetylgalactosamine antisense oligonucleotide (GalNAc-Ctl-ASO) treated mice fed the HFHC diet exhibited progression of steatohepatitis and fibrosis, but GalNAc-Sab-ASO treatment from weeks 40 to 52 reversed these findings while decreasing hepatic SAB, p-ATF2, and p-JNK to chow-fed levels. CONCLUSIONS: Hepatic SAB expression increases in HFHC diet-fed mice. Deletion or knockdown of SAB inhibited sustained JNK activation and steatohepatitis, fibrosis, and systemic metabolic effects, suggesting that induction of hepatocyte Sab is an important driver of the interplay between the liver and the systemic metabolic consequences of overfeeding. In established NASH, hepatocyte-targeted GalNAc-Sab-ASO treatment reversed steatohepatitis and fibrosis.


Assuntos
Cirrose Hepática/patologia , Proteínas de Membrana/metabolismo , Síndrome Metabólica/patologia , Proteínas Mitocondriais/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Animais , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Hepatócitos/patologia , Humanos , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/genética , Síndrome Metabólica/metabolismo , Camundongos , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/genética , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Oligonucleotídeos Antissenso/administração & dosagem , Cultura Primária de Células
16.
CPT Pharmacometrics Syst Pharmacol ; 10(8): 890-901, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34085768

RESUMO

IONIS-FXIRX (BAY2306001) is an antisense oligonucleotide that inhibits the synthesis of coagulation factor XI (FXI) and has been investigated in healthy volunteers and patients with end-stage renal disease (ESRD). FXI-LICA (BAY2976217) shares the same RNA sequence as IONIS-FXIRX but contains a GalNAc-conjugation that facilitates asialoglycoprotein receptor (ASGPR)-mediated uptake into hepatocytes. FXI-LICA has been studied in healthy volunteers and is currently investigated in patients with ESRD on hemodialysis. We present a model-informed bridging approach that facilitates the extrapolation of the dose-exposure-FXI relationship from IONIS-FXIRX to FXI-LICA in patients with ESRD and, thus, supports the selection of FX-LICA doses being investigated in patients with ESRD. A two-compartment pharmacokinetic (PK) model, with mixed first- and zero-order subcutaneous absorption and first-order elimination, was combined with an indirect response model for the inhibitory effect on the FXI synthesis rate via an effect compartment. This PK/pharmacodynamic model adequately described the median trends, as well as the interindividual variabilities for plasma drug concentration and FXI activity in healthy volunteers of IONIS-FXIRX and FXI-LICA, and in patients with ESRD of IONIS-FXIRX . The model was then used to predict dose-dependent steady-state FXI activity following repeat once-monthly doses of FXI-LICA in a virtual ESRD patient population. Under the assumption of similar ASGPR expression in patients with ESRD and healthy volunteers, doses of 40 mg, 80 mg, and 120 mg FXI-LICA are expected to cover the target range of clinical interest for steady-state FXI activity in the phase IIb study of FXI-LICA in patients with ESRD undergoing hemodialysis.


Assuntos
Fator XI/antagonistas & inibidores , Falência Renal Crônica/terapia , Modelos Biológicos , Oligonucleotídeos Antissenso/administração & dosagem , Relação Dose-Resposta a Droga , Humanos , Oligonucleotídeos Antissenso/farmacocinética , Oligonucleotídeos Antissenso/farmacologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Diálise Renal
17.
Cell Rep ; 35(11): 109259, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34133918

RESUMO

Dysfunction of the endolysosomal-autophagy network is emerging as an important pathogenic process in Alzheimer's disease. Mutations in the sorting receptor-encoding gene SORL1 cause autosomal-dominant Alzheimer's disease, and SORL1 variants increase risk for late-onset AD. To understand the contribution of SORL1 mutations to AD pathogenesis, we analyze the effects of a SORL1 truncating mutation on SORL1 protein levels and endolysosome function in human neurons. We find that truncating mutation results in SORL1 haploinsufficiency and enlarged endosomes in human neurons. Analysis of isogenic SORL1 wild-type, heterozygous, and homozygous null neurons demonstrates that, whereas SORL1 haploinsufficiency results in endosome dysfunction, complete loss of SORL1 leads to additional defects in lysosome function and autophagy. Neuronal endolysosomal dysfunction caused by loss of SORL1 is relieved by extracellular antisense oligonucleotide-mediated reduction of APP protein, demonstrating that PSEN1, APP, and SORL1 act in a common pathway regulating the endolysosome system, which becomes dysfunctional in AD.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Autofagia , Endossomos/metabolismo , Proteínas Relacionadas a Receptor de LDL/deficiência , Lisossomos/metabolismo , Proteínas de Membrana Transportadoras/deficiência , Neurônios/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Demência/genética , Demência/patologia , Técnicas de Inativação de Genes , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas Relacionadas a Receptor de LDL/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/farmacologia , Fenótipo , Ligação Proteica
18.
Trends Mol Med ; 27(7): 643-659, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33994320

RESUMO

RNA splicing is the enzymatic process by which non-protein coding sequences are removed from RNA to produce mature protein-coding mRNA. Splicing is thereby a major mediator of proteome diversity as well as a dynamic regulator of gene expression. Genetic alterations disrupting splicing of individual genes or altering the function of splicing factors contribute to a wide range of human genetic diseases as well as cancer. These observations have resulted in the development of therapies based on oligonucleotides that bind to RNA sequences and modulate splicing for therapeutic benefit. In parallel, small molecules that bind to splicing factors to alter their function or modify RNA processing of individual transcripts are being pursued for monogenic disorders as well as for cancer.


Assuntos
Peptídeos Penetradores de Células/administração & dosagem , Doenças Genéticas Inatas/terapia , Terapia Genética/métodos , Neoplasias/terapia , Oligonucleotídeos Antissenso/administração & dosagem , Splicing de RNA , Doenças Genéticas Inatas/genética , Humanos , Neoplasias/genética
19.
J Pharmacokinet Pharmacodyn ; 48(5): 639-654, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33991294

RESUMO

Antisense oligonucleotides (ASOs) are promising therapeutic agents for a variety of neurodegenerative and neuromuscular disorders, e.g., Alzheimer's, Parkinson's and Huntington's diseases, spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS), caused by genetic abnormalities or increased protein accumulation. The blood-brain barrier (BBB) represents a challenge to the delivery of systemically administered ASOs to the relevant sites of action within the central nervous system (CNS). Intrathecal (IT) delivery, in which drugs are administered directly into the cerebrospinal fluid (CSF) space, enables to bypass the BBB. Several IT-administered ASO therapeutics have already demonstrated clinical effect, e.g., nusinersen (SMA) and tofersen (ALS). Due to novelty of IT dosing for ASOs, very limited pharmacokinetic (PK) data is available and only a few modeling reports have been generated. The objective of this work is to advance fundamental understanding of whole-body distribution of IT-administered ASOs. We propose a physiologically-based pharmacokinetic modeling approach to describe the distribution along the neuroaxis based on PK data from non-human primate (NHP) studies. We aim to understand the key processes that drive and limit ASO access to the CNS target tissues. To elucidate the trade-off between parameter identifiability and physiological plausibility of the model, several alternative model structures were chosen and fitted to the NHP data. The model analysis of the NHP data led to important qualitative conclusions that can inform projection to human. In particular, the model predicts that the maximum total exposure in the CNS tissues, including the spinal cord and brain, is achieved within two days after the IT injection, and the maximum amount absorbed by the CNS tissues is about 4% of the administered IT dose. This amount greatly exceeds the CNS exposures delivered by systemic administration of ASOs. Clearance from the CNS is controlled by the rate of transfer from the CNS tissues back to CSF, whereas ASO degradation in tissues is very slow and can be neglected. The model also describes local differences in ASO concentration emerging along the spinal CSF canal. These local concentrations need to be taken into account when scaling the NHP model to human: due to the lengthier human spinal column, inhomogeneity along the spinal CSF may cause even higher gradients and delays potentially limiting ASO access to target CNS tissues.


Assuntos
Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/farmacocinética , Animais , Transporte Biológico/fisiologia , Barreira Hematoencefálica/metabolismo , Sistema Nervoso Central/metabolismo , Humanos , Injeções Espinhais/métodos , Primatas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...